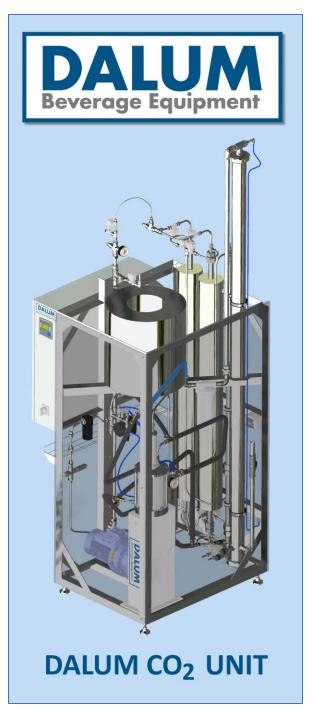
# DALUMA Beverage Equipment



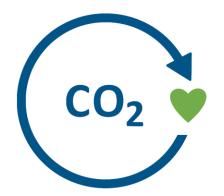
## Secure Own Food Grade CO<sub>2</sub> Supply


High quality CO<sub>2</sub> from your own controlled source

Stainless Steel and Oil Free Compressor Technology

No Refrigerants in Unit

**Food Contact Materials Used** 


Easy to use and maintain From 1.000 barrels/Y





## Craft Scale CO<sub>2</sub> Recovery

Sustainable and natural CO<sub>2</sub> for your beer



Environmentally Friendly Financially Feasible



### **Top Quality CO2 and Delivery Safety**

- No Oil, Chemicals filters or refrigerants in CO2 Unit
- Stainless Steel and Oli Free DALUM Compressor
- Only Food Contact Materials in contact with CO2
- 99.98% purity and no detectable odor in product
- Oxygen traces in ppb
- Own control of CO2 source and security of supply

#### Plug and Play unit ready to go

- Fully assembled and tested unit ready to plug inn.
- Water, electricity, coolant and drain to be connected.
- No vendor installation and commissioning hours needed.
- No PED or ASME needed for plant
- \*\* Storage tanks for liquid CO2 needs approvals and inspections.

## DALUM CO2 recovery plant



#### Easy to fit in

- Very small footprint of plant(1m<sup>2</sup>)
- Low noise level (65 dB) and can be placed anywhere in the brewery
- No balloon due to DALUM Compressor with 100% variable speed
- No hazardous ammonia or CFC refrigerants as external cooling source is used

#### **Environmentally friendly**

- Low consumption of power and water
- Improving working environment in brewery
- Eliminates breweries possible largest CO2 emission source, 2 tons less emission per tons recovered
- Eliminates breweries purchase and transport of CO2

## DALUM CO2 RECOVERY PLANT

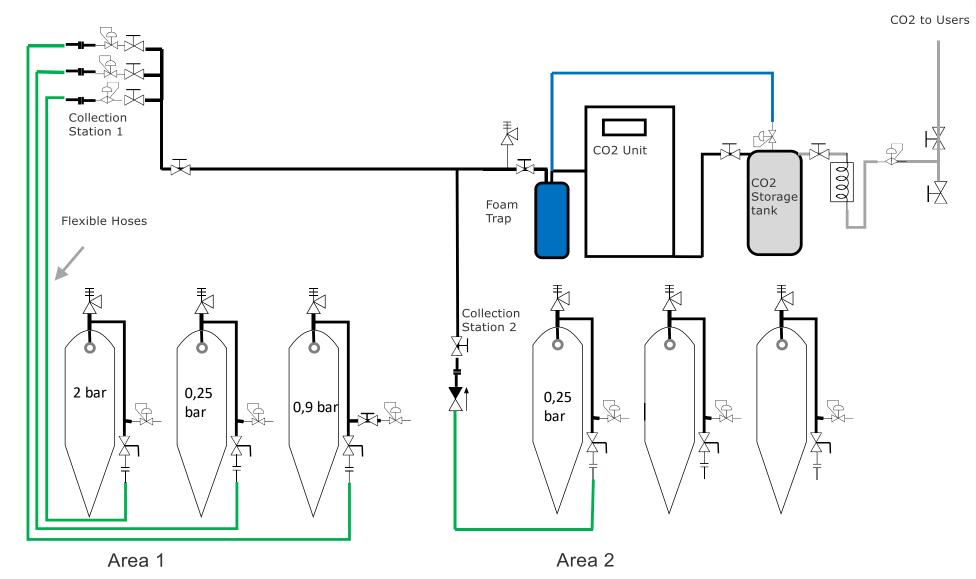


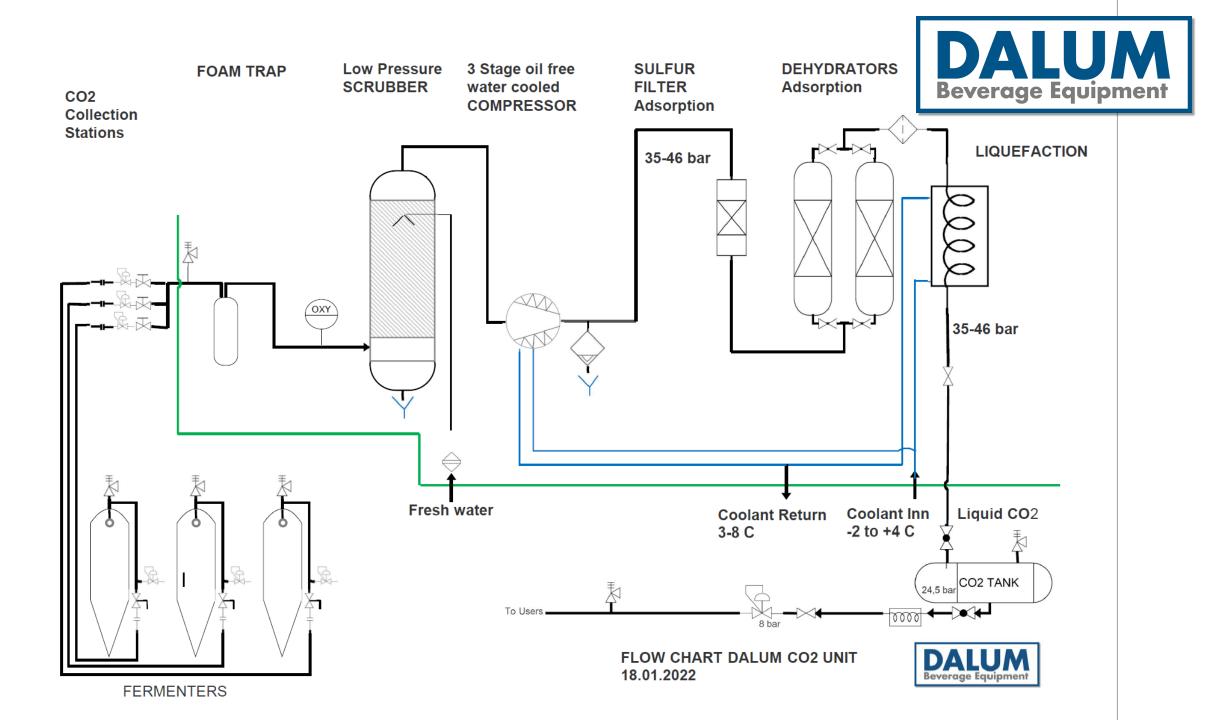
#### Easy to use and maintain

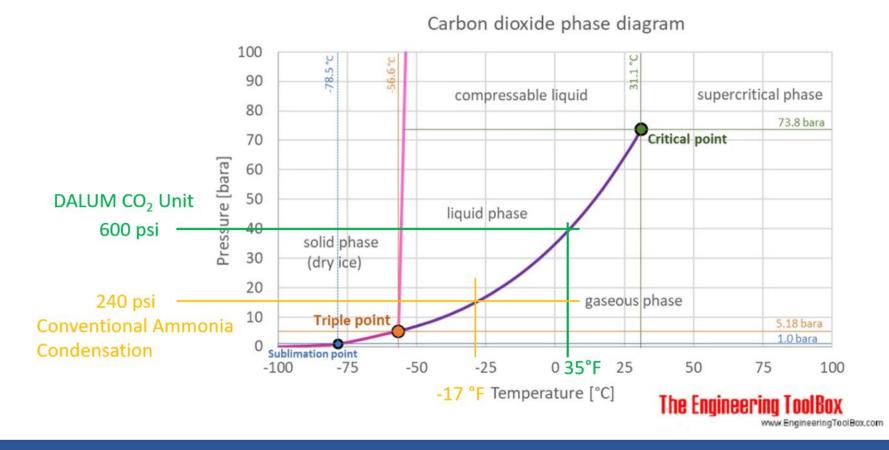
- Simple and fully automatic operation with self diagnosing software
- Adapts automatically capacity to fermentation cycles
- No consumables to be replaced regularly
- Dashboard on Smartphone and remote access

#### **Financially Feasible**

- Low capex and short return on investment for 2.000 50.000 hl breweries
- Reduces cost of CO2 considerable and secures supply
- Increase surplus CO2 value by cylinder filling for beer dispensers for draft beer.

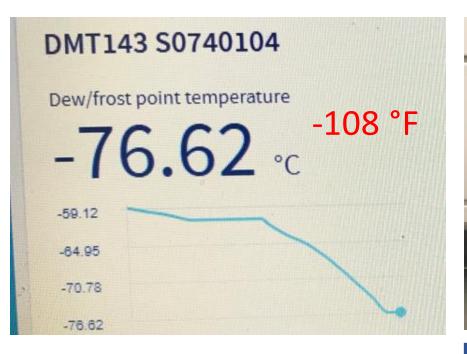

## DALUM CO2 RECOVERY PLANT

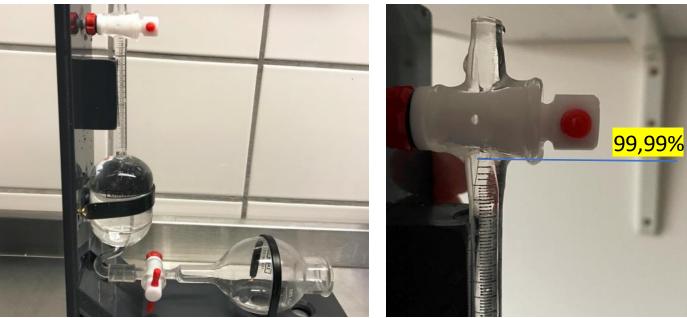



## System overview










No Refrigerants Three stage compressor produces 45 bars condensation pressure





#### Eddie Gadd, Ramsgate Brewery:

collection system (generally 16 hours from yeast pitching). Some CO<sub>2</sub> is lost through the initial stage of fermentation, due to high O<sub>2</sub> content, and some remains in the beer at the end. With good management, 75% yields have been achieved, with an oxygen content of <6 ppb, measured with an Orbisphere (wholesale liquid CO<sub>2</sub> at the bottling site measures 16 ppb O<sub>2</sub>). A burette is used to demonstrate purity >99.99%.

# High Purity and Very Low Oxygen Content



|                                  | Typical chem      | ical profile in DALUM CO | D2 recovery       |                                    |          |
|----------------------------------|-------------------|--------------------------|-------------------|------------------------------------|----------|
|                                  | Presence in feed, | After water scrubber,    | After compressor, | After dehydrator<br>and condenser, |          |
| Component                        | ppm               | ppm                      | ppm               | ppm                                | ISBT ppn |
| Acetaldehyde                     | 20                | 0                        | 0                 | 0,02                               | 0,1      |
| Ethyl Acetate                    | 200               | 10                       | 8                 | 0,0                                |          |
| Mercaptans                       | 5                 | 1                        | 0,7               | 0,0                                | 0,1      |
| Dimethyl Sulfide                 | 35                | 3                        | 2                 | 0,05*                              | 0,2      |
| Ethanol                          | 2500              | 5                        | 0                 | 0,0                                |          |
| Carbon Disulfide CS <sub>2</sub> | 0                 | 0                        | 0                 | <0,05                              | 0,2      |
| Hydrogen Sulphide, H₂S           | 0                 | 0                        | 0                 | <0,01                              | 0,2      |
| Carbonyl sulphide COS            | 0                 | 0                        | 0                 | <0,05                              | 0,2      |
| Oxygen O <sub>2</sub>            | 1000              | 1000                     | 1000              | 0,005 -0,1*                        | 30       |
| Moist H <sub>2</sub> O           | > 10000           | >10000                   | 1000              | 1                                  | 20       |
| Carbon dioxide %                 | 96                | 97                       | 99                | 99,985-99,995                      | 99,900   |
| Nitrogen                         | 4000              | 4000                     | 4000              | 0,1                                | na       |
| Amonia                           | na                | na                       | na                | <1                                 | 2,5      |
| Oil & Grease                     | na                | na                       | na                | <1                                 | !        |
| Hydrocarbon                      | na                | na                       | na                | 1,5                                | 5        |
| Benzene                          | na                | na                       | na                | <0,01                              | 2,       |
| Methanol                         | na                | na                       | na                | 0,06                               | 10       |

ISBT: International Society of Beverage Technologists

Typical Chemical Profile in CO<sub>2</sub> After Main Process Steps



Oil free Sanitary Variable Speed Low Noise





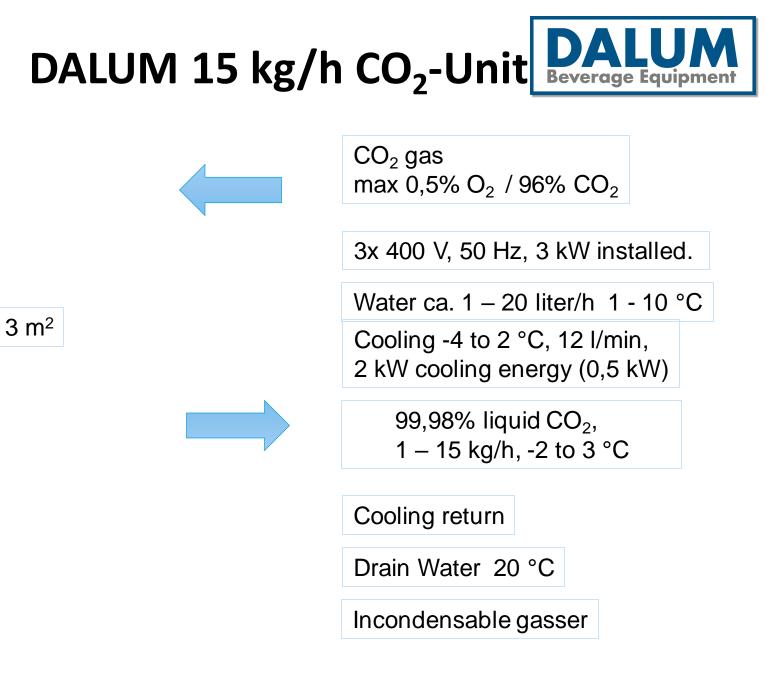


| Beer<br>Output 5<br>% alc. Hl | Compressor<br>displacement<br>Size | CO2<br>recovery<br>(Tons CO2) | Emission reduction<br>(Tons CO2) | Unit<br>Price<br>€ | Tank<br>Budget<br>€ |
|-------------------------------|------------------------------------|-------------------------------|----------------------------------|--------------------|---------------------|
| 7,000                         | 5 kg/h                             | 22                            | 44                               | 32,500             | 15,000              |
| 15,000                        | 10 kg/h                            | 66                            | 132                              | 47,700             | 20,000              |
| 25,000                        | 15 kg/h                            | 99                            | 198                              | 64,000             | 30,000              |
| 50,000                        | 30 kg/h                            | 198                           | 396                              | 99,750             | 40,000              |

Emission reductions

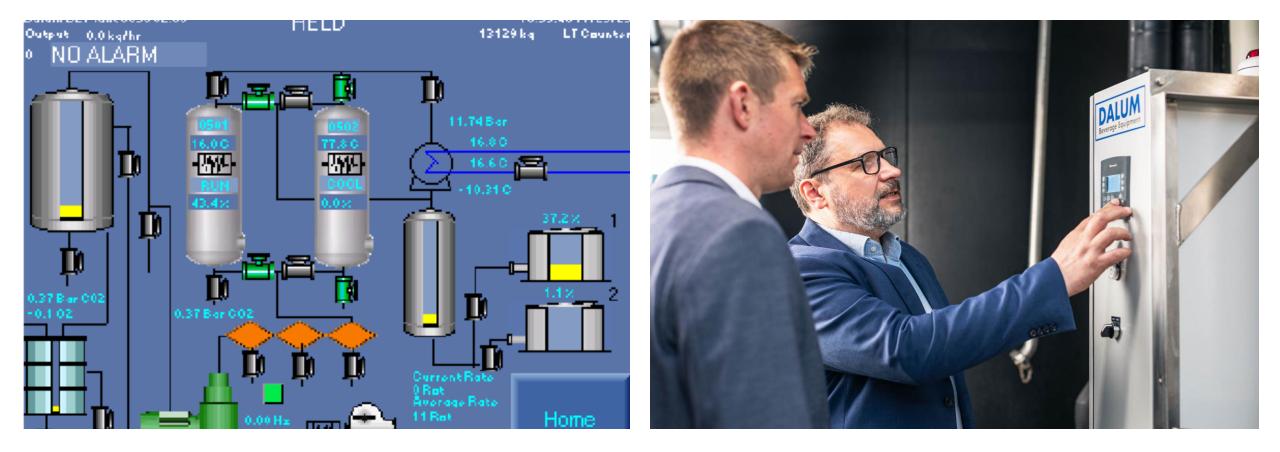
- Two tons of emission reduction from each tons CO2 recovered
- Producing and transporting 1 tons CO<sub>2</sub> to a Brewery emits 2 tons CO<sub>2</sub>\*
- \* University of Winnipeg

# Financially Feasible-Short Payback Time




| Beer output in hl.                                            | Unit model | Theoretical compressor<br>displacement |   | Unit price | Faire disco | ount** |
|---------------------------------------------------------------|------------|----------------------------------------|---|------------|-------------|--------|
| 1.000-5.000 hl/y                                              | Micro      | 5kg/h                                  | € | 32.500     | €           | 29.250 |
| 5.000-15.000 hl/y                                             | Mini       | 10kg/h                                 | € | 47.700     | €           | 42.930 |
| 15.000-25.000 hl/y                                            | Craft      | 15kg/h                                 | € | 64.000     | €           | 57.600 |
| 25.000-50.000 hl/y                                            |            | 30kg/h                                 | € | 99.750     |             | 89.775 |
| *Storage tanks for liquid CO2 need approvals and inspections. |            |                                        |   |            |             |        |

\*\*First 5 units sold.


• Variable cost below € 40 per tons depending on electricity (0,1 €/kW)





# Control System with Unitronics Vision Combi PLC Remote Operator









[kg] Produced CO2

## Storage Tanks and Vaporizers for all needs







## **Collection Stations**





# Foam Traps and PRV









#### Excess CO2 Vent and Flash Gas Return



# Solutions for user lines and try cock

